Scattered manifold-valued data approximation
نویسندگان
چکیده
منابع مشابه
Scattered manifold-valued data approximation
We consider the problem of approximating a function f from an Euclidean domain to a manifold M by scattered samples [Formula: see text], where the data sites [Formula: see text] are assumed to be locally close but can otherwise be far apart points scattered throughout the domain. We introduce a natural approximant based on combining the moving least square method and the Karcher mean. We prove ...
متن کاملScattered data approximation of fully fuzzy data by quasi-interpolation
Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$. In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...
متن کاملApproximation Order Equivalence Properties of Manifold-Valued Data Subdivision Schemes
There has been an emerging interest in developing an approximation theory for manifold-valued functions. In this paper, we address the following fundamental problem: Let M be a manifold with a metric d. For each smoothness factor r > 0 and approximation order R > 0, is there an approximation operator Ah = Ah;r,R that maps samples of any f : R→ M on a grid of size h to an approximant fh = Ah(f |...
متن کاملManifold Approximation of Set-valued Functions
Sequences are denoted by x — although C functions are involved in the sequel, their derivative are not explicitly used so this notation for sequences will not interfere with the usual one for derivatives. A function f : R −→ P(R) is a subset of R. Notations and theorems related to manifolds are taken from Hirsch[1]. Points belonging to manifolds will be denoted with tildes. The closed n-dimensi...
متن کاملMultiscale Representations for Manifold-Valued Data
We describe multiscale representations for data observed on equispaced grids and taking values in manifolds such as the sphere S2, the special orthogonal group SO(3), the positive definite matrices SPD(n), and the Grassmann manifolds G(n, k). The representations are based on the deployment of Deslauriers–Dubuc and average-interpolating pyramids “in the tangent plane” of such manifolds, using th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 2016
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s00211-016-0823-0